数学中证明等差数列的常用方法1 设等差数列an=a1+(n-1)d 最大数加最小数除以二即 [a1+a1+(n-1)d]/2=a1+(n-1)d/2 {an}的*均数为 Sn/n=[na1下面是小编为大家整理的2023年度数学中证明等差数列常用方法,菁选2篇,供大家参考。
数学中证明等差数列的常用方法1
设等差数列 an=a1+(n-1)d
最大数加最小数除以二即
[a1+a1+(n-1)d]/2=a1+(n-1)d/2
{an}的*均数为
Sn/n=[na1+n(n-1)d/2]/n=a1+(n-1)d/2
得证
1 三个数abc成等差数列,则c-b=b-a
c^2(a+b)-b^2(c+a)=(c-b)(ac+bc+ab)
b^2(c+a)-a^2(b+c)=(b-a)(ac+bc+ab)
因c-b=b-a,则(c-b)(ac+bc+ab)=(b-a)(ac+bc+ab)
即c^2(a+b)-b^2(c+a)=b^2(c+a)-a^2(b+c)
所以a^2(b+c), b^2(c+a), c^2(a+b) 成等差数列
等差:an-(an-1)=常数 (n≥2)
等比:an/(an-1=常数 (n≥2)
等差:an-(an-1)=d或2an=(an- 1)+(an+1),(n≥2)
等比:an/(an-1)=q或an*方=(an-1)*(an+1)(n≥2).
数学中证明等差数列的常用方法2
我们推测数列{an}的通项公式为an=5n-4
下面用数学规纳法来证明:
1)容易验证a1=5*1-4=4,a2=5*2-4=6,a3=5*3-4=11,推测均成立
2)假设当n≤k时,推测是成立的,即有aj=5(j-1)-4,(j≤k)
则Sk=a1+a2+…ak=5*(1+2+…+k)-4k=5k(k+1)/2-4k=k(5k-3)/2
于是S(k+1)=a(k+1)+Sk
而由题意知:(5k-8)S(k+1)-(5k+2)Sk=-20k-8
即:(5k-8)*[a(k+1)+Sk]-(5k+2)Sk=-20k-8
所以(5k-8)a(k+1)-10Sk=-20k-8
即:(5k-8)a(k+1)=5k(5k-3)-20k-8=25k^2-35k-8=(5k-8)(5k+1)
所以a(k+1)=5k+1=5(k+1)-4
即知n=k+1时,推测仍成立。
在新的数列中
An=S[4n-(4n-4)]
=a(4n-4)+a(4n-3)+a(4n-2)+a(4n-1)+a(4n)
A(n-1)=S[4(n-1)-4(n-2)]
=a(4n-8)+a(4n-7)+a(4n-6)+a(4n-5)+a(4n-4)
An-A(n-1)=a(4n-4)+a(4n-3)+a(4n-2)+a(4n-1)+a(4n)-a(4n-8)+a(4n-7)+a(4n-6)+a(4n-5)+a(4n-4)
=4d+4d+4d+4d+4d
=20d(d为原数列公差)
20d为常数,所以新数列为等差数列上,an=5n-4即为数列的通项公式,故它为一等差数列。
推荐访问:等差数列 证明 常用 数学中证明等差数列常用方法 菁选2篇 数学中证明等差数列的常用方法1 证明等差数列的方法及例题