高考竞争异常激烈,千军万马争过独木桥,秋天到了,而你正以凌厉的步伐迈进这段特别的岁月中。这是一段青涩而又平淡的日子,每个人都隐身于高考,而平淡之中的张力却只有真正的勇士才可以破译。为了助你下面是小编为大家整理的人教版高三数学说课稿【精选推荐】,供大家参考。
【导语】高考竞争异常激烈,千军万马争过独木桥,秋天到了,而你正以凌厉的步伐迈进这段特别的岁月中。这是一段青涩而又平淡的日子,每个人都隐身于高考,而平淡之中的张力却只有真正的勇士才可以破译。为了助你一臂之力,高中频道为你精心准备了《人教版高三数学说课稿》助你金榜题名!
【篇一】
教学目的:使学生熟练掌握奇偶函数的判定以及奇偶函数性质的灵活应用;
培养学生化归、分类以及数形结合等数学思想;提高学生分析、解题的能力。
教学过程:
一、知识要点回顾
1、奇偶函数的定义:应注意两点:①定义域在数轴上关于原点对称是函数为奇偶函数的必要非充分条件。②fxfx或fxfx是定义域上的恒等式(对定义域中任一x均成立)。
2、判定函数奇偶性的方法(首先注意定义域是否为关于原点的对称区间)
①定义法判定(有时需将函数化简,或应用定义的变式:fxfxfxfx0fx1fx0。fx
②图象法。
③性质法。
3、奇偶函数的性质及其应用
①奇偶函数的定义域关于原点对称;②奇函数图象关于原点对称,并且在两个关于原点对称的区间上有相同的单调性;③偶函数图象关于y轴对称,并且在两个关于原点对称的区间上单调性相反;④若奇函数fx的定义域包含0,则f0=0;⑤fx为偶函数,则fxfx;⑥y=fx+a为偶函数
而偶函数y=fx+a的对称轴为fxafxafx对称轴为x=a,
x=0(y轴);⑦两个奇函数的和差是奇函数,积商是偶函数;两个偶函数的和差、积商都是偶函数;一奇一偶的两个函数的积商是奇函数。
二、典例分析
例1:试判断下列函数的奇偶性
|x|x10;(1)fx|x2||x2|;(2
)fx;(3)f**2x1**x0(4)fx;(5
)ylog2x;(6)fxloga。2x1**x0
解:(1)偶;(2)奇;(3)非奇非偶;(4)奇;(5)奇;(6)奇。简析:(1)用定义判定;
(2)先求定义域为[,再化简函数得fx则fxfx,为奇函数;
(3)定义域不对称;
(4)x注意分段函数奇偶性的判定;
(5)、均利用fxfx0判定。
例2,(1)已知fx是奇函数且当x>0时,f**32x21则xR时x32x21x0fx0x0
32x2x1x0
(2)设函数yfx1为偶函数,若x1时yx21,则x>1时,yx24x5。
简析:本题为奇偶函数对称性的灵活应用。
(1)中当x<0时,x0,则f**32x21可得f**32x21,∴x<0时,f**32x21
也可画出示意图,由原点左边图象上任一点(x,y)关于原点的对称点x,y在右边的图象上可得yx32x21yx32x21。
(2)中yfx1为偶函数fx1fx1fx的对称轴为
x=1故x=1右边的图象上任一点x,y关于x=1的对称点x2,y在
(可画图帮助分析)。yx21上,∴yx221x24x5。
本题也可利用二次函数的性质确定出解析式。
练习:设fx是定义在[-1,1]上的偶函数,gx与fx图象关于直线x=1对称,当x[2,3]时gx2tx24x23(t为常数),则fx的表达式为________。
例3:若奇函数fx是定义在(-1,1)上的增函数,试解关于a的不等式fa2fa240。
分析:抽象函数组成的不等式的求解,常利用函数的单调性脱去“f”符号,转化为关于自变量的不等式求解,但要注意定义域)。
解:依题意得fa2fa24f4a2(∵fx为奇函数)又∵fx是定义在(-1,1)上的单调增函数
1a21∴1a241
2a24aa2
∴解集是aa2
变式1:设定义在[-2,2]上的偶函数fx在区间[0,2]上单调递减,若f1mfm,求实数m的取值范围。|1m||m|简解:依题意得21m2
2m2121m
(注意数形结合解题)
变式2:设定义在[-2,2]上的偶函数y=fx+1在区间[0,2]上单调递减,若f1-m 11m3简解:依题意得1m3 |1m1||m1|1m22 例4,已知函数fx满足fx+y+fx-y=2fx·fy,x,yR,且 (1)f0=1,2fx的图象关于y轴对称。f00,试证: (分析:抽象函数奇偶性的证明,常用到赋值法及奇偶性的定义)。解:(1)令x=y=0,有f0f02f20,又f00∴f01。 (2)令x=0,得fyfy2f0fy2fy ∴fyfyyR ∴fx为偶函数,∴fx的图象关于y轴对称。 归类总结出抽象函数的解题方法与技巧。 变式训练:设fx是定义在0,上的减函数,且对于任意x,y0,x都有ffxfyy 1(1)求f1;(2)若f4=1,解不等式fx6f2x (点明题型特征及解题方法) 三、小结 1、奇偶性的判定方法; 2、奇偶性的灵活应用(特别是对称性); 3、求解抽象不等式及抽象函数的常用方法。 四、课后练习及作业 1、完成《教学与测试》相应习题。 2、完成《导与练》相应习题。 【篇二】 一、说教材 1.从在教材中的地位与作用来看 《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养. 2.从学生认知角度看 从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错. 3.学情分析 教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨. 4.重点、难点 教学重点:公式的推导、公式的特点和公式的运用. 教学难点:公式的推导方法和公式的灵活运用. 公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点. 二、说目标 知识与技能目标: 理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题. 过程与方法目标: 通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力. 情感与态度价值观: 通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点. 三、说过程 学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程: 1.创设情境,提出问题 在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求.西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格.国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢? 设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点. 此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定. 设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔. 2.师生互动,探究问题 在肯定他们的思路后,我接着问:1,2,22,…,263是什么数列?有何特征?应归结为什么数学问题呢? 探讨1:,记为1式,注意观察每一项的特征,有何联系?学生会发现,后一项都是前一项的2倍 探讨2:如果我们把每一项都乘以2,就变成了它的后一项,1式两边同乘以2则有,记为2式.比较12两式,你有什么发现? 设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机. 经过比较、研究,学生发现:1、2两式有许多相同的项,把两式相减,相同的项就消去了,得到:.老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么1式两边要同乘以2呢? 设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心. 3.类比联想,解决问题 这时我再顺势引导学生将结论一般化, 这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导. 设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感. 对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础. 再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?引导学生得出公式的另一形式 设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用. 4.讨论交流,延伸拓展 推荐访问:人教版
数学
说课稿
人教版高三数学说课稿
人教版高三数学说课稿
人教版高三数学说课稿模板
人教版高三数学说课稿范文
人教版高一数学说课稿