当前位置:首页 > 专题范文 > 公文范文 >

高中数学说课稿20篇五篇

时间:2023-01-06 11:15:04 来源:网友投稿

高中数学说课稿(精选20篇)1  作为一名专为他人授业解惑的人民教师,有必要进行细致的说课稿准备工作,说课稿有利于教学水*的提高,有助于教研活动的开展。快来参考说课稿是怎么写的吧!以下是小编为大家整下面是小编为大家整理的高中数学说课稿20篇五篇,供大家参考。

高中数学说课稿20篇五篇

高中数学说课稿(精选20篇)1

  作为一名专为他人授业解惑的人民教师,有必要进行细致的说课稿准备工作,说课稿有利于教学水*的提高,有助于教研活动的开展。快来参考说课稿是怎么写的吧!以下是小编为大家整理的高中数学说课稿范文(精选20篇),欢迎大家借鉴与参考,希望对大家有所帮助。

高中数学说课稿(精选20篇)2

  尊敬的各位教师:

  大家好,我是**场的**号考生。今日,我说课的资料是**,对于本节课,我将从教什么、怎样教、为什么这么教来阐述本次说课。

  一、说教材

  教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。

  正弦函数的性质是选自北师大版高中数学必修四第一章三角函数第五节正弦函数的性质与图象5。3正弦函数的性质的资料,主要资料便是正弦函数的性质,教材经过作图、观察、诱导公式等方法得出正弦函数y=sinx的性质。并且教材突出了正弦函数图象的重要性,能够帮忙学生更深刻的认识、理解、记忆正弦函数的性质。

  二、说学情

  合理把握学情是上好一堂课的基础,本次课所应对的学生群体具有以下特点。

  高中的学生掌握了必须的基础知识,思维较敏捷,动手本事较强,但理解本事、自主学习本事较缺乏。基于此,本节课注重引导学生动脑思考,更富有启发性。并且学生的自尊心较强,所以对学生的评价注重先扬后抑,鼓励学生多多发言,还能够对学生进行正确引导。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:

  (一)知识与技能

  会用正弦函数图象研究和理解正弦函数的性质,能熟练运用正弦函数的性质解决问题。

  (二)过程与方法

  经过正弦函数的图象,探索正弦函数的性质,提升逻辑思考、归纳总结的本事。

  (三)情感态度价值观

  经过本节的学习体验数学的严谨性,养成细心观察、认真分析、严谨认真的良好思维习惯和不断探求新知识的精神。

  四、说教学重难点

  本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点

  (一)教学重点

  由正弦函数的图象得到正弦函数的性质。

  (二)教学难点

  正弦函数的周期性和单调性。

  五、说教法和学法

  此刻的文盲不是不懂字的人,而是没有掌握学习方法的人。因而在本节课我将采用讲授法、探究法、练习法等教学方法,我在教学过程中异常重视对学生的引导,让学生从机械的学答中向学问转变,从学会到会学,成为真正学习的主人。

  六、说教学过程

  在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,限度的调动学生参与课堂的进取性、主动性。

  (一)新课导入

  首先是导入环节,在这一环节中我将采用复习的导入方法。

  我会让学生回忆正弦函数的概念,以及上节课所学的正弦函数图象,让学生根据图象思考正弦函数有哪些性质从而引出课题——《正弦函数的性质》。

  这样设计能够让学生对前面的知识进行充分的回顾,为本节课的顺利开展奠定基础。

  (二)新知探索

  接下来是新课讲授环节,在这一环节我将采用讲解法、小组合作探究的方式进行。

  让学生自我经过五点作图法画出正弦函数的图象,并在大屏幕上展示正弦函数的标准图象。

  学生一边看投影,一边思考如下问题:

  (1)正弦函数的定义域是什么

  (2)正弦函数的值域是什么

  (3)正弦函数的最值情景如何

  (4)正弦函数的周期

  (5)正弦函数的奇偶性

  (6)正弦函数的递增区间

  给学生十分钟的时间小组讨论,之后小组代表发言,师生共同总结。

  1、定义域:y=sinx定义域为R

  2、值域:引导学生回忆单位圆中的正弦函数线,发现值域为[—1,1]

  3、最值:根据值域的确定得到在何处取得最值以及函数的正负性。

  4、周期性:经过观察图象引导学生发现正弦函数的图象是有规律不断重复出现的,让学生思考后发现是每隔2π重复出现一次,得出y=sinx的最小正周期是2π。之后经过诱导公式证明。

  5、奇偶性:在刚才经过诱导公式证明后顺势提出公式,总结得到正弦函数是奇函数。

  6、单调性:最终让学生根据刚才所得到的结论自我尝试总结正弦函数的单调性。

  在探究完正弦函数性质后,利用单位圆和正弦函数图象理解和记忆正弦函数的性质,这样的安排能够让学生及时巩固正弦函数的性质,并且还能够结合之前所学的单位圆,三角函数线等知识,让学生感受到知识间的联系。

  (三)课堂练习

  第三环节是巩固环节,多媒体出示书上例题2:用五点法画出函数的简图,并根据图象讨论它的性质。

  经过这样的练习,既巩固了学生学过的知识,又进一步培养了学生理解、分析、推理的本事,趣味的知识在学生们的进取主动的探索中显得更有味道。

  (四)小结作业

  最终一个环节为小结作业环节,关于课堂小结,我打算让学生自我来总结。这样既发挥了学生的主体性,又能够提高学生的总结概括本事,让我在第一时间得到学习反馈,及时加以疏导。

  在作业布置上,我让学生思考余弦函数的图象与性质是什么样的。

  经过比较灵活的题目呈现,能够让学生结合本节课的知识进而思考后续的知识。

  七、说板书设计

  我的板书设计遵循简介明了突出重点部分,以下是我的板书设计:

  (略)

高中数学说课稿(精选20篇)3

  一、地位作用

  数列是高中数学重要的内容之一,等比数列是在学习了等差数列后新的一种特殊数列,在生活中如储蓄、分期付款等应用较为广泛,在整个高中数学内容中数列与已学过的函数及后面的数列极限有密切联系,它也是培养学生数学能力的良好题材,它可以培养学生的观察、分析、归纳、猜想及综合解决问题的能力。

  基于此,设计本节的数学思路上:

  利用类比的思想,联系等差数列的概念及通项公式的学习方法,采取自学、引导、归纳、猜想、类比总结的教学思路,充分发挥学生主观能动性,调动学生的主体地位,充分体现教为主导、学为主体、练为主线的教学思想。

  二、教学目标

  知识目标:

  1)理解等比数列的概念

  2)掌握等比数列的通项公式

  3)并能用公式解决一些实际问题

  能力目标:培养学生观察能力及发现意识,培养学生运用类比思想、解决分析问题的能力。

  三、教学重点

  1)等比数列概念的理解与掌握 关键:是让学生理解“等比”的特点

  2)等比数列的通项公式的推导及应用

  四、教学难点

  “等比”的理解及利用通项公式解决一些问题。

  五、教学过程设计

  (一)预习自学环节。(8分钟)

  首先让学生重新阅读课本105页国际象棋发明者的故事,并出示预习提纲,要求学生阅读课本P122至P123例1上面。

  回答下列问题

  1)课本中前3个实例有什么特点?能否举出其它例子,并给出等比数列的定义。

  2)观察以下几个数列,回答下面问题:

  1, , , ,……

  -1,-2,-4,-8……

  1,2,-4,8……

  -1,-1,-1,-1,……

  1,0,1,0……

  ①有哪几个是等比数列?若是公比是什么?

  ②公比q为什么不能等于零?首项能为零吗?

  ③公比q=1时是什么数列?

  ④q>0时数列递增吗?q<0时递减吗?

  3)怎样推导等比数列通项公式?课本中采取了什么方法?还可以怎样推导?

  4)等比数列通项公式与函数关系怎样?

  (二)归纳主导与总结环节(15分钟)

  这一环节主要是通过学生回答为主体,教师引导总结为主线解决本节两个重点内容。

  通过回答问题(1)(2)给出等比数列的定义并强调以下几点:

  ①定义关键字“第二项起”“常数”;

  ②引导学生用数学语言表达定义: =q(n≥2);

  ③q=1时为非零常数数列,既是等差数列又是等比数列。

  引申:若数列公比为字母,分q=1和q≠1两种情况;引入分类讨论的思想。

  ④q>0时等比数列单调性不定,q<0为摆动数列,类比等差数列d>0为递增数列,d<0为递减数列。

  通过回答问题(3)回忆等差数列的推导方法,比较两个数列定义的不同,引导推出等比数列通项公式。

  法一:归纳法,学会从特殊到一般的方法,并从次数中发现规律,培养观察力。

  法二:迭乘法,联系等差数列“迭加法”,培养学生类比能力及新旧知识转化能力。

高中数学说课稿(精选20篇)4

  一、教材分析

  本节知识是必修五第一章《解三角形》的第一节资料,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,并且解三角形和三角函数联系在高考当中也时常考一些解答题。所以,正弦定理和余弦定理的知识十分重要。

  根据上述教材资料分析,研究到学生已有的认知结构心理特征及原有知识水*,制定如下教学目标:

  认知目标:在创设的问题情境中,引导学生发现正弦定理的资料,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

  本事目标:引导学生经过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维本事,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

  情感目标:面向全体学生,创造*等的教学氛围,经过学生之间、师生之间的交流、合作和评价,调动学生的主动性和进取性,给学生成功的体验,激发学生学习的兴趣。

  教学重点:正弦定理的资料,正弦定理的证明及基本应用。

  教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时确定解的个数。

  二、教法

  根据教材的资料和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究资料,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,进取探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水*和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的本事线联系方法与技能使学生较易证明正弦定理,另外经过例题和练习来突破难点

  三、学法

  指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、团体等多种解难释疑的尝试活动,将自我所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维本事,构成了实事求是的科学态度,增强了锲而不舍的求学精神。

  四、教学过程

  第一:创设情景,大概用2分钟

  第二:实践探究,构成概念,大约用25分钟

  第三:应用概念,拓展反思,大约用13分钟

  (一)创设情境,布疑激趣

  “兴趣是最好的教师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不明白AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮忙别人的热情和学习的兴趣,从而进入今日的学习课题。

  (二)探寻特例,提出猜想

  1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

  2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

  3.让学生总结实验结果,得出猜想:

  在三角形中,角与所对的边满足关系

  这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

  (三)逻辑推理,证明猜想

  1.强调将猜想转化为定理,需要严格的理论证明。

  2.鼓励学生经过作高转化为熟悉的直角三角形进行证明。

  3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

  4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

  (四)归纳总结,简单应用

  1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

  2.正弦定理的资料,讨论能够解决哪几类有关三角形的问题。

  3.运用正弦定理求解本节课引入的三角形零件边长的问题。自我参与实际问题的解决,能激发学生知识后用于实际的价值观。

  (五)讲解例题,巩固定理

  1.例1.在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

  2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

  例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

  (六)课堂练习,提高巩固

  1.在△ABC中,已知下列条件,解三角形.

  (1)A=45°,C=30°,c=10cm

  (2)A=60°,B=45°,c=20cm

  2.在△ABC中,已知下列条件,解三角形.

  (1)a=20cm,b=11cm,B=30°

  (2)c=54cm,b=39cm,C=115°

  学生板演,教师巡视,及时发现问题,并解答。

  (七)小结反思,提高认识

  经过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

  1.用向量证明了正弦定理,体现了数形结合的数学思想。

  2.它表述了三角形的边与对角的正弦值的关系。

  3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

  (从实际问题出发,经过猜想、实验、归纳等思维方法,最终得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅仅收获着结论,并且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生进取性,使数学教学成为数学活动的教学。)

  (八)任务后延,自主探究

  如果已知一个三角形的两边及其夹角,要求第三边,怎样办?发现正弦定理不适用了,那么自然过渡到下一节资料,余弦定理。布置作业,预习下一节资料。

高中数学说课稿(精选20篇)5

  各位老师:

  大家好!

  我叫**x,来自**。我说课的题目是《用样本的数字特征估计总体的数字特征》,内容选自于高中教材新课程人教A版必修3第二章第二节,课时安排为三个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析四大方面来阐述我对这节课的分析和设计

  一、教材分析

  1、教材所处的地位和作用

  在上一节我们已经学习了用图、表来组织样本数据,并且学习了如何通过图、表所提供的信息,用样本的频率分布估计总体的分布情况。本节课是在前面所学内容的基础上,进一步学习如何通过样本的情况来估计总体,从而使我们能从整体上更好地把握总体的规律,为现实问题的解决提供更多的帮助。

  2、教学的重点和难点

  重点:

  ⑴能利用频率颁布直方图估计总体的众数,中位数,*均数。

  ⑵体会样本数字特征具有随机性

  难点:能应用相关知识解决简单的实际问题。

  二、教学目标分析

  1、知识与技能目标

  (1)能利用频率颁布直方图估计总体的众数,中位数,*均数。

  (2)能用样本的众数,中位数,*均数估计总体的众数,中位数,*均数,并结合实际,对问题作出合理判断,制定解决问题的有效方法。

  2、过程与方法目标:

  通过对本节课知识的学习,初步体会、领悟"用数据说话"的统计思想方法。

  3、情感态度与价值观目标:

  通过对有关数据的搜集、整理、分析、判断培养学生"实事求是"的科学态度和严谨的工作作风。

  三、教学方法与手段分析

  1、教学方法:结合本节课的教学内容和学生的认知水*,在教法上,我采用"问答探究"式的教学方法,层层深入。充分发挥教师的主导作用,让学生真正成为教学活动的主体。

  2、教学手段:通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性。

  四、教学过程分析

  1、复习回顾,问题引入

  「屏幕显示」

  〈问题1〉在日常生活中,我们往往并不需要了解总体的分布形态,而是更关心总体的某一数字特征,例如:买灯泡时,我们希望知道灯泡的*均使用寿命,我们怎样了解灯泡的的使用寿命呢?当然不能把所有灯泡一一测试,因为测试后灯泡则报废了。于是,需要通过随机抽样,把这批灯泡的寿命看作总体,从中随机取出若干个个体作为样本,算出样本的数字特征,用样本的数字特征来估计总体的数字特征。

  提出问题:什么是*均数,众数,中位数?

  (教师提问,铺垫复习,学生思考、积极回答。根据学生回答,给出补充总结,借助用多媒体分别给出他们的定义)

  「设计意图」使学生对本节课的学习做好知识准备。

  (进一步提出实例、导入新课。)

  「屏幕显示」

  〈问题2〉选择薪水高的职业是人之常情,假如你大学毕业有两个工作相当的单位可供选择,现各从甲乙两单位分别随机抽取了50名员工的月工资资料如下(单位:元)

  分组计算这两组50名员工的月工资*均数,众数,中位数并估计这两个公司员工的*均工资。你选择哪一个公司,并说明你的理由。

  (学生分组分别求两组数据的*均工资。

  学生:甲、乙*均工资分别为:甲:1320元,乙:1530元。

  所以我选乙公司。

  学生乙:甲、乙两公司的众数分别为甲:1200,乙:1000,所以我选择甲公司。

  学生丙:我要根据我的能力选择。)

  「设计意图」学生按"常理"做出选择,教师指出只凭*均工资做出判断的依据并不可靠,从而引导学生进一步深入问题。

  2讲授新课,深入认识

  ⑴「屏幕显示」

  例如,在上一节抽样调查的100位居民的月均用水量的数据中,我们画出了这组数据的频率分布直方图。现在,观察这组数据的频率分布直方图,能否得出这组数据的众数、中位数和*均数?

  (把学生分成若干小组,分别计算*均数、中位数、众数,或估计*均数、中位数、众数。然后比较结果,会发现通过计算的结果和通过估计的结果出现了一定的误差。引导学生分析产生误差的原因。原因是由于样本数据的频率分布直方图把原始的一些数据给遗失了。让学生明白产生这样的误差对总体的估计没有大的影响,因为样本本身也有随机性。)

  「设计意图」让学生懂得如何根据频率分布直方图估计样本的*均数、中位数和众数。使学生明白从直方图中估计样本的数字特征虽然会有一些误差,但直观、快速、可避免繁琐的计算和阅读数据的过程。

  ⑵〈提出问题〉根据样本的众数、中位数、*均数估计总体*均数的基本数据,并对上一节的探究问题制定一个合理*价用水量的的标准。

  (师生通过共同交流探讨得知仅以*均数或只使用中位数或众数制定出*价用水标准都是不合理的,必须综合考虑才能做出合理的选择)

  「设计意图」使学生会依据众数、中位数、*均数对数据进行综合判断,并做出合理选择。也为接下来对他们优缺点的总结打下基础。

  ⑶总结出众数、中位数、*均数三种数字特征的优缺点。

  (先由学生思考,然后再老师的引导下做出总结)

  「设计意图」使学生能更准确更全面地依据样本的众数、中位数、*均数对数据进行综合判断,并做出合理选择,使实际问题得到正确的解决。

  3、反思小结、培养能力

  ①学习利用频率直方图估计总体的众数、中位数和*均数的方法。

  ②介绍众数、中位数和*均数这三个特征数的优点和缺点。

  ③学习如何利用众数、中位数和*均数的特征去分析解决实际问题。

  「设计意图」小节是一堂课的概括和总结,有利于优化学生的认知结构,把课堂教学传授的知识较快转化为学生的素质,也更进一步培养学生的归纳概括能力

  4、课后作业,自主学习

  课本练习

  [设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。

  5、板书设计

推荐访问:高中数学 说课稿 篇五篇 高中数学说课稿20篇五篇 高中数学说课稿(精选20篇)1 高中数学说课稿ppt