当前位置:首页 > 专题范文 > 公文范文 >

非线性记忆项的弱耦合半线性双波动系统解的爆破分析

时间:2023-07-17 20:55:03 来源:网友投稿

摘 要:研究了一类非线性记忆项的弱耦合半线性双波动系统解的爆破情况。

运用测试函数和切片化方法,证明了其柯西问题在次临界情况下解的全局非存在性。

同时,还得到了其解的生命跨度上界估计。

关键词:非线性记忆项;
弱耦合半线性双波动系统;

爆破

中图分类号:O175.4

文献标志码:A

参考文献:

[1]AGEMI R, KUROKAWA Y H. TAKAMURA H. Critical curve for p-q systems of nonlinear wave equations in three space dimensions[J]. Journal of Differential Equations, 2000, 167(1):
87-133.

[2] ZHOU Y. Life span of classical solutions to [J]. Chinese Annals Mathematics, Series B, 1992, 13:
230-243.

[3] LIU Y, LI Y F, SHI J C. Estimates for the linear viscoelastic damped wave equation on the Heisenberg group[J]. Journal of Differential Equations, 2021, 285:
663-685.

[4] YORDANOV B T, ZHANG Q S. Finite time blow up for critical wave equations in high dimensions[J]. Journal of Functional Analysis, 2006, 231 (2):
361-374.

[5] CHEN W H, PALMIERI A. Blow-up result for a semilinear wave equation with a nonlinear memory term// Cicognani M, Del Santo D, Parmeggiani A, Reissig M. Anomalies in Partial Differential Equations. Switzerland:
Springer, 2021:
77-97.

[6] CHEN W H. Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms[J]. Nonlinear Analysis, 2021, 202:
112160.

[7] CHEN W H, REISSIG M. Blow-up of solutions to Nakao"s problem via an iteration argument[J]. Journal of Differential Equations, 2021, 275:
733-756.

[8] CHEN W H, PALMIERI A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case[J]. Discrete and Continuous Dynamical Systems, 2020, 40:
5513-5540.

[9] 歐阳柏平,肖胜中. 具有非线性项的弱耦合半线性Moore-Gibson-Thompson系统解的全局非存在性[J/OL]. 贵州大学学报(自然科学版):
1-9[2021-10-21]. http://kns.cnki.net/kcms/detail/52.5002.N.20210915.1740.002.html.

[10]LAI N A, TAKAMURA H. Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glassey"s conjecture[J]. Differential Integral Equations, 2019, 32:
37-48.

(责任编辑:于慧梅)

Blow-up Analysis on Solutions to a Weakly Coupled Semilinear

Double-wave System with Nonlinear Memory Terms

OUYANG Baiping*

(Guangzhou Huashang College, Guangzhou 511300, China)

Abstract:

Blow-up of solutions to a class of weakly coupled semilinear double-wave system with nonlinear memory terms is studied. By employing test functions and slicing methods, nonexistence of global solutions to the Cauchy problem for the semilinear double-wave system in the subcritical case is proved. Also, the upper bound estimate of the lifespan of solutions is obtained.

Key words:

nonlinear memory term; weakly coupled semilinear double-wave system; blow-up

收稿日期:2021-10-21

基金项目:广东省普通高校创新团队资助项目(2020WCXTD008);
广州华商学院校内资助项目(2020HSDS01,2021HSKT01)

作者简介:欧阳柏平(1979—),男,讲师,硕士,研究方向:偏微分方程,E-mail:oytengfei79@163.com.

通讯作者:欧阳柏平,E-mail:oytengfei79@163.com.

猜你喜欢爆破紧邻次高压燃气管线小间距隧道控制爆破施工技术及安全防护中国管理信息化(2016年24期)2017-02-04浅谈水利工程施工中高边坡支护与开挖技术的应用中国科技纵横(2016年20期)2016-12-28安哥拉道碴厂露天爆破施工技术科技视界(2016年11期)2016-05-23在松散岩土层条件下如何进行快速掘进爆破技术探究中小企业管理与科技·中旬刊(2016年2期)2016-03-18地面减震孔在地铁侧穿加油站爆破施工中的应用科技视界(2016年3期)2016-02-26浅孔台阶静力爆破技术在基坑开挖中的应用建材发展导向(2014年3期)2014-07-07

推荐访问:耦合 爆破 线性