当前位置:首页 > 专题范文 > 公文范文 >

中国洪涝灾害的产业链动态损失评估

时间:2023-06-14 13:30:05 来源:网友投稿

佘运磊,周 琪,曲 申

(1.北京理工大学 管理与经济学院 能源与环境政策研究中心,北京 100081;
2.清华大学 环境学院,北京 100084)

在气候变暖的背景下,全球极端天气灾害发生的频率和造成的经济损失成倍增加,威胁着人们的生命财产安全,制约着社会经济的可持续发展。就灾害发生的频率、造成的经济损失和受影响的人口数而言,洪涝灾害是全球范围内最严重的自然灾害之一。在中国,过去20年的洪涝灾害影响了9亿人,占全世界受洪灾影响人口的55%[1]。由于社会经济的快速发展,中国洪涝灾害造成的直接经济损失呈现上升趋势[2-3]。因此,对中国洪涝灾害进行研究具有重要的现实意义和紧迫性。面对日益严重和频繁的气象灾害,除了通过减少温室气体排放来减缓气候变暖的速度,通过改进预报方法降低极端事件的不确定性外,如何采取和制定适应性战略和政策来减少灾害损失已成为一个重要的前沿课题[4]。国内外从2014年开始陆续颁布了一系列应对包括洪水灾害在内的灾害适应战略和政策[5-7],旨在制定和实施综合防灾减灾规划,建设具有风险抵御能力和可持续发展的韧性社会。为实现上述适应战略和政策,洪涝灾害综合经济损失评估是一项重要的基础性工作[8],可以为洪涝灾害的补偿和恢复机制提供数据支持。

洪涝灾害的经济影响包括直接经济损失和间接经济损失。直接经济损失包括农林牧渔业、工业信息交通运输业、水利设施等经济损失,由水利部公布。间接经济损失是指因直接损失导致的生产能力下降而造成的供需失衡通过产业链上下游关联传播引发的进一步的GDP下降[9-10]。间接经济损失评估是制定减灾政策的重要内容,可以为确定防洪基础设施的投入力度和灾后恢复重建定量模拟提供依据,也是适应性评估的重要组成部分,可以确保掌握适应措施的全部经济效益。目前,中国洪涝灾害间接经济损失评估的模型机制尚不完善,评估时长多以年、月为单位[11-12],评估区域多为单一的省份、市[13-16]而不是多区域整体评估,纳入的直接损失数据还不够全面。总的来说,洪涝灾害间接经济损失评估目前还没有统一可靠的方法。基于此,本文拟建立一套高精度、完善合理的中国洪涝灾害间接经济损失评估方法,在将洪涝灾害的直接影响转化为相应部门的生产能力损失的基础上,利用最新开发的基于复杂网络与适应性主体的环境经济系统CLUES模型,逐日高精度的模拟洪涝灾害导致的生产能力下降在产业链中传播引发的间接经济损失。以2017年中国洪涝灾害为例,展示模型方法的作用机理和评估效果,了解中国各省份各部门在面对洪涝灾害冲击时的脆弱性和关键风险节点,并对产业链进行风险预警。帮助制定适应性战略,减少洪涝灾害造成的间接经济损失。

用于间接经济损失评估的模型有投入产出模型(IO)、可计算一般均衡模型(CGE)、适应性区域投入产出模型(ARIO)、洪水足迹评估模型以及气候适应模型(Acclimate)。较早进行灾害间接经济损失定量评估的学者采用的是投入产出模型[17-18],例如,路琮等[19]基于投入产出表分析了自然灾害造成的农业总产值损失对整个经济系统的影响。但是IO模型假设生产要素的比例、价格是固定的,具有线性和刚性,无法模拟适应性行为[20]。后来有学者采用CGE模型[21-23],如PAUW等[23]结合作物损失模型与CGE 模型评估极端天气事件的经济影响,结果表明每年干旱和洪水灾害给 Malawi(马拉维)带来的社会经济损失率约为1.7%。CGE模型允许价格变化、非线性生产函数、投入和进口替代,但是由于需要校准的参数量过多,在评估灾害损失时认为经济处于均衡状态的假设存在争议[24]。

近期的研究主要在IO模型的基础上引入适应性行为,例如Hallegatte等[25]开发的ARIO模型,考虑工业部门生产能力的损失在经济系统的传播,并将产能过剩、进口替代、调整订单、产量恢复的适应性行为引入;
Li等[26]将劳动力的损失引入模型,EKOS等[27]在此基础上,利用柯布道格拉斯生产函数建立了资本和劳动力与生产损失之间的对应关系。在ARIO模型基础上,有学者进一步开发了包括直接经济损失和间接经济损失在内的洪水足迹评估模型[28-30],他们的创新和改进主要是提出了对资源的分配方案和消费者的适应性行为,优化生产失衡,将工业和家庭资本的恢复需求添加到最终需求,制定资本投资的分配方式实现多样化的恢复策略。ARIO模型和洪水足迹评估模型虽然引入了部分适应行为,但是没有考虑不同区域间同质产品的替代效应并且只涉及生产、消费的适应行为,没有包含运输链条而忽略了不同地区间的货物运输时间,使得生产能力损失导致的供应约束在供应链中瞬时传播,从而高估了洪灾带来的间接经济损失[31],ARIO模型模拟的时间不能具体到每日尺度,且没有系统的框架,不同的研究对象多基于不同的假设。Willner等[3]开发的Acclimate模型机制是当供需和价格偏离均衡时,通过最优化生产水平和分配需求订单实现利润最大化等。这种企业利润最大化行为不符合现实基于习惯的微观行为准则,模型机制过于复杂,存在自相矛盾的地方。

洪涝灾害直接损失数据来源和输入模型方法有土地利用法、人口法、统计调查数据等。第一种方法是土地利用法,利用气候和河流洪水模型得出洪水范围和水深、计算财产(包括住宅、工商业)的暴露,并结合深度—损失函数计算直接资本损失,与总资本存量相比得到相应的损失比例输入模型[25][27][32-33]。第二种方法是人口法,将计算出的受洪水影响人口数除以总人口的比例作为所有非服务业部门的生产损失比例[3]。这两种方法大多被国外研究人员用在已发生的洪灾但没有完备的损失统计数据,或者未来洪水直接损失预测中,估计的直接损失数据与实际数据之间存在差距。第三种方法是利用已发生的洪涝灾害的统计调查报告,研究人员按照各细分部门的经济份额进行损失分配[15-16][34]。中国有较为完善的洪涝灾害损失统计体系,学者基于水利部公布的《水旱灾害公报》将全国作为一个整体去评估洪涝灾害的间接经济损失[35],但评估时长是以年为单位,且不能完全纳入各行各业的经济损失、受灾人口、房屋倒塌等数据,以充分反映洪灾直接影响造成的生产能力下降情况。

综上所述,以往文献存在一些不足之处:从模型机制的角度看,以往的文献没有对适应性行为进行全面的总结,本文利用的CLUES模型,融合了众多的微观适应性机制,能够实现逐日高精度模拟,从而为供应链提供预警;
从研究区域来看,国外学者多以全球和欧洲为研究对象,国内学者多以一个省、市或将中国作为整体进行单区域评估,而本文将中国31个省份作为研究对象(由于缺乏数据,未考虑港、澳、台地区),进行多区域整体损失评估;
从模拟的结果看,洪涝灾害通过产业链级联效应造成的间接经济损失占总经济损失的比例仍不确定,范围从25%~74%变化较大[9][14][28][34]。从直接损失数据看,本文考虑了分行业的直接经济损失,人口受灾和房屋损坏等,由多部门联合现场核查、卫星遥感照片对比、自下而上估算得出,更能反映洪涝灾害造成的各行业实际生产能力损失情况。

洪涝灾害的直接冲击以及通过产业链传播的间接冲击造成的影响持续时间多在一年之内,因此需要使用中短期的高精度环境经济系统模型模拟。本文利用北京理工大学新近研发的基于复杂网络和适应性主体的环境经济系统模型(Climate-Resilient and Low-Carbon Unfolding Economic Scenarios,以下简称CLUES),高时空精度地评估洪涝灾害的间接经济损失。模型采用面向对象的模拟方式,在虚拟世界[36]中设定生产、消费和运输主体以复杂而现实的方式进行互动,模型所刻画的主体行为均存在微观基础[37-39]。本文中模型的网络结构数据是中国省级多区域投入产出表(MRIO):“中国经济体”是研究的实例;
各省份—部门是生产主体;
各省份的最终消费是消费主体;
生产主体之间、生产主体和消费主体之间的运输链条就是运输主体,其长度是按照省份间距离和陆路运输速度估算的运输天数。

将外生的洪涝灾害直接损失数据输入时,各主体在一个给定的复杂网络之中进行动态演化与互动,最终CLUES模型会输出所有地区—部门365天逐日的非均衡的GDP,与没有外生冲击时的稳态GDP对比,即可得出相应冲击通过产业链造成的间接经济损失。各主体的行为如下所述。

(一)生产主体

生产主体可以生产产品,向供应网络中相连接的其他主体送出产品与订单,如果遇到外部冲击,则可以表现出一定的适应性行为,如补充存货、调整上游供应商的订单份额、利用闲置生产能力、调整生产技术、灾后重建等。

(二)消费主体

消费主体也可以根据现实的供需状况,调整不同供应商所占的份额

1.准备送出订单

根据如下方式将这期给不同地区生产者的订单份额进行更为现实的调整:如果某生产者上期提供的商品大于给它的订单量,那么这期就增加给其的订单份额;
反之,则减少。如下所示

其中,Z→〈C〉为生产主体送到消费主体的产品量。

向区域r′中的生产主体订购

如果s是异质的,则无须计算份额。

2.记忆:存储往期变量以指导行为

消费主体存储当前模拟期间的相关状态变量,这些变量将在未来的计算中使用。

(三)运输主体

运输主体模拟了生产主体之间、生产主体和消费主体之间实际的货物运输过程,是连接各主体的运输链条,其总长度是各主体之间的运输天数。各主体之间运输天数通过估算得到,涉及到的31个省及直辖市之间的距离来自高德地图,运输速度取35千米/小时[38]

1.装载产品:把生产主体生产的产品装载到运输链条上

2.运输产品:每一天向前运输一步

3.卸载产品:把运输链条上的产品卸载给相应的生产、消费主体

(一)数据来源

本文选择2017年的全国洪涝灾害作为研究对象的三个原因:2017年全国洪涝灾害直接经济损失为2 142.53亿元,较接近历年来洪涝灾害直接经济损失的平均值;
2017年中国发生洪涝灾害的区域分布较广,除天津外其他省份都受到了不同程度的直接影响;
2017年中国洪涝灾害发生的流域具有代表性,长江中游区域,洞庭湖、松花江、珠江等流域等都是历年经常发生洪灾的地区。本文的研究对象为中国省级水平,进行多区域的分析,与单个省份的分析相比更符合现实,因为企业的产业链不会仅局限于本省,而是会遍布全国各个省份。

2017年中国31个省份(缺少港、澳、台地区数据)和42个部门间的多区域投入产出表[40]数据来自CEADs数据库;
洪涝灾害直接损失数据来自2017年《水旱灾害公报》《全国洪涝灾情》《中国气象灾害年鉴》;
生产能力(提供服务)损失比例估算数据来自《中国统计年鉴》《中国工业统计年鉴》《中国固定资产投资建设总额》。全国人均居住面积采用2016年住建部公布的数据。

(二)洪涝灾害直接损失数据处理

1.将全国范围的直接损失分配到各省份

《全国洪涝灾情》仅公布了全国范围的农牧渔业、工业交通运输业的经济损失,没有细分到各省,需要根据各省相应行业的实物损失占比将损失进行分配。

1)农林牧渔业损失分配方式

各省份农业受灾情况有相应的统计数据,而农业和林、牧、渔的受灾程度比较相同,根据各省份农业的损失占全国总损失的比例,将全国的农林牧渔经济损失分配到各省份。

2)工业交通运输业分配方式

工业交通运输业直接经济损失涵盖了采矿业、交通运输业、电力业和通信业的直接经济损失。首先以采矿业、交通运输业、电力业和通信业四个行业对气象灾害敏感度得分为权重,将工业交通运输业直接经济损失进行分配,采矿业权重为4.93%,交通运输业权重为51.41%,电力业权重为42.43%,通信业权重1.23%[41]。然后,将各个行业的全国总损失分配到各省份。分配方式同上述的农林牧渔业,依据相应行业各省份实物受损占比进行分配:采矿业以各省停产工矿企业个数占全国停产工矿企业总数占比为依据;
电力行业以各省供电线路中断次数占全国供电线路中断总次数比例为依据;
通信业以各省通信中断次数占全国通信中断总次数为依据。

将交通运输业进一步划分为铁路运输业、道路运输业、水上运输业和航空运输业(占比很低,忽略不计)四个子行业,分别计算各省份子行业的损失占比,汇总得到各省份交通运输业受损占比

部分省份的应急管理厅可能会公布本省份当年的分行业详细的洪涝灾害损失情况,本文根据各省实际公布的数据对从全国分配到各省份的数据进行修正。

2.将各省直接损失数值转换为MRIO表相应省份—部门生产(提供服务)能力损失比例

根据图1中洪涝灾害直接影响的类型,本文采用以下两种方法转化其直接影响:

图1 洪涝灾害直接影响与MRIO部门生产(提供服务)能力损失比例匹配关系

1)直接经济损失转换为部门生产(提供服务)能力损失比例方式

产品产值类经济损失

资本存量类经济损失

本文采用永续盘存法对上述部门的固定资本存量进行估计[42]

2)房屋倒塌和人口受灾转换为部门生产(提供服务)能力损失比例方式

洪涝灾害受灾人口是指在洪涝灾害中生产生活遭受损失的人口数量(同一人遭受一次以上洪涝灾害时,只统计一次,不重复计)。受到洪灾影响的人可能在一段时间(几天或者一周)内,在上班工作的时候迟到几个小时,本文的损失数据是以每一日为步长输入的,因此将受灾人口处理为受到洪涝灾害的影响人口在当天全天不能工作。对于房屋倒塌,本文认为房屋所有者会对受损房屋进行处理修缮,房屋倒塌当天不能参加工作。因此把人口受灾比例和房屋受损比例之和当作一般制造业(MRIO中6~24部门)和建筑业的生产能力损失比例。

3.将各省份年度损失分配到洪涝灾害发生的具体日期

上述计算得到的各项数据为全年的总损失情况,是对每一天受到的洪涝灾害损失汇总得到的。CLUES模型要求以每一天为步长对各省份—部门进行生产(提供服务)能力损失比例进行输入,本文根据每一场洪涝灾害造成对应日期的人口受灾数量、直接经济损失以及应急响应等级、洪水预警等级、紧急状态将洪涝灾害的年度总损失分配到具体的日期。

4.将各省份—部门生产(提供)服务能力损失比例纳入CLUES模型进行模拟

1)用中国省级多区域投入产出表为中国经济体赋值;

2)初始化世界和主体,根据已有变量推出其他模拟需要的变量;

3)洪灾冲击发生,输入各省份—部门当天的生产(提供服务)能力损失比例;

4)连接各主体,使其按上文给定顺序行动;

5)下一天开始,重复3)和4),总共模拟365天(从2017年5月1日—2018年4月30日)。

图2显示了利用CLUES模型模拟的2017年中国洪涝灾害直接损失通过产业链传播造成GDP的间接损失。横轴是模拟的日期,2017年5月1日是第一天,共365天。黑色虚线表示洪涝灾害冲击的时间范围,从5月9日开始到11月7日结束。将稳态的GDP值减去CLUES模型模拟的在2017年洪涝灾害冲击下的GDP值,得到相应的损失值。每日损失区域表示每日的GDP损失,可以清晰地再现2017洪涝灾害的过程。最大单日GDP损失26.5亿元出现在7月1日,主要是长江2017年第1号洪水导致湖南、广西、江西、四川等省遭受较大直接损失带来的冲击。其次是6月24日的16.7亿元,受江西、浙江、贵州等地洪涝灾害的冲击。其他单日GDP损失较大的日期包括8月23日,是由于台风天鸽在广东省登陆引起的洪涝灾害带来的冲击。以及10月5日,是由于发生在湖北的洪涝灾害带来的冲击。尽管7月15日吉林发生了严重的洪涝灾害,但该冲击并未造成较大的单日GDP损失。累积损失区域表示累计的GDP损失,2017年洪涝灾害通过产业链传播的间接经济损失是621.6亿元,占直接经济损失2 142.5亿元的29%。

图2 中国每日和累积的间接经济损失

图3展示了各省每日GDP损失曲线,以及洪涝灾害发生时间和单次占全年比例(仅标注洪灾直接损失超过10亿元的省份)。图3中被标注的曲线都有明显的波峰,这些波峰出现的时间与各省份洪涝灾害直接冲击时间高度一致,而曲线其他位置相对平缓,这表明这些省份的间接损失主要是由该省份洪涝灾害直接冲击造成的,而其他省的洪涝灾害通过省际产业链传递造成的损失相对较小。这可能是由于运输成本等原因,企业对产业链上下游大部分进行了本地化。而图3中未标注省份(海南、青海和**除外)的曲线没有明显的波峰且曲线波幅较大,说明这些省份的间接损失主要是由于其他省份的洪涝灾害通过产业链传播造成的,而不是本省洪涝灾害导致的,因为这些省份受洪灾的影响较小,直接损失很低几乎为零。这表明,洪涝灾害的直接冲击会外溢到其他地区,可能是因为这些省份与受洪涝灾害冲击较大的省份之间产业链连接紧密。海南、青海和**等地洪涝灾害造成的直接经济损失虽然很小,但受灾人口比例较高,导致其每日GDP损失曲线出现明显峰值。

图3 各省份间接经济损失曲线(按经济损失比例大小排序)

各省间接经济损失出现时间与该省份遭受直接冲击的时候非常一致,表明产业链效应是立即发生的,且在间接经济损失在出现后的一周之内就降至很低的水平,表明洪涝灾害的直接冲击对各省份经济体来说影响整体较小。各省份损失曲线的高点多集中在7月初,是由于2017年长江1号洪水造成的生产能力下降通过产业链传播造成,个别省份损失曲线的高点出现在该省份受洪涝灾害严重影响的时间。

将MRIO表中42部门按照行业类型汇总为了六大部门类,包括农林牧渔业(1)、采矿业(2~5)、制造业(6~23)、电力燃气水供应业(24~26)、建筑业(27)和服务业(28~42)。图4展示了全国和各省上述部门类的逐日和累积损失,各部门类的损失主要发生在6月下旬、7月上旬、8月下旬和10月初,是因为部分省份在这些时期遭受了较重的洪涝灾害冲击。制造业的损失占到所有部门损失的50.6%,因为人口受灾会导致制造业停产,而因为产业链的密切联系会遭受到进一步的级联损失。其次是服务业,占25.6%,服务业作为末端行业,各行业的直接冲击会通过产业链传导对其造成影响。而受直接损失冲击严重的农业、采矿业等间接经济损失占比很低,因为这些行业多处于生产链的初始端,不易受到产业链的级联影响。各省份各部门损失占比与全国的情况相似,且直接经济损失越大的省份,其制造业损失占比也相对较高;
直接经济损失越小的省份,服务业损失占比越高。

图4 全国及各省份6个部门类的GDP损失情况

图5横轴代表模拟的365天,纵轴是按照1 302个省份—部门损失值的降序排序,颜色变化代表GDP损失,颜色轴上限为13万元。本文使用热力图显示了2017年中国洪涝灾害的经济足迹。从图5可以发现,自2017年长江1号洪水发生后,前200个省份—部门每天的GDP损失都超过13万元,直到模拟结束,这表明产业链对这些省份—部门的影响将持续很长一段时间。这200个省份—部门包括受洪涝灾害直接冲击较严重的湖南、江西、湖北、广东、四川等省的制造业部门,以及受洪涝灾害冲击较小的上海、北京等地区的金融业、山西的煤炭采选产品;
第201~700个省份—部门,损失值在7—10月份较大,而在洪涝灾害直接冲击结束后,变得很小,表明产业链的影响在几个月之内逐渐退。而701~1 302个省份—部门,损失值非常低,且很快接近于零,表明产业链冲击的时间非常短。从时间轴上看,各省份—部门损失较多的日期集中在洪涝灾害冲击较严重的7月初、8月下旬及10月上旬。

图5 2017年中国洪涝灾害的经济足迹

图6展示了模拟第62天(2017年7月4日)每个地区每种产品的稀缺性指数,纵轴是按MRIO表中顺序排序的42个部门,每个部门代表一种产品,横轴是按间接经济损失占GDP比例降序进行排序的31个地区。稀缺性指数被定义为(产品需求—产品供应)/(产品需求)。产品供给是这一天运到这个地区的该产品,产品需求是这一天所有企业生产所需的这种产品加上消费者的需求。每个单元格的颜色代表该地区部门的产品稀缺指数。如果这个指标大于0,就是供不应求。本文计算了31个地区42种产品365天的稀缺指数,可以绘制365张与图6相同的图片,由于篇幅的限制,本文选择了一天内所有地区—部门的稀缺指数之和最大的进行展示。

图6 2017年中国洪涝灾害导致的各地区—部门的产品短缺

图6显示,在7月4日这一天,湖南省的制造业稀缺指数都超过了0.1,表明超过10%的需求得不到满足,进而导致生产能力损失和附加值损失。广西省的金属和非金属开采、非金属制品和金属冶炼、专用、通信设备、金属制品修理,建筑业等稀缺指数都较大,接近0.1。因为湖南和广西两个省份在7月初遭受了当年“长江1号洪水”的冲击,造成的直接损失通过产业链进行的传播、引发了上述产品的短缺。江西省的采矿业、金属制品和电力行业稀缺指数较高,接近0.08,这些行业的稀缺是其GDP损失的主要原因。从各种产品上来看,各地区的专用设备稀缺指数都比较高,这说明该产品容易受到产业链的影响,进而导致间接经济损失。因此,适应性资金应该优先像该部门进行分配,比如适当增加其库存,提高产能过剩的比例等,来减少直接冲击通过产业链传播造成的间接经济损失。

通过经济足迹和稀缺指数图,本文逐日高精度展示了洪涝灾害通过产业链传播造成的经济损失情况以及损失产生的原因。本文的研究结果可以通过预测具体时间、具体地区的产品短缺情况,为供应链进行预警,从而尽可能实现洪灾通过产业链传播引发的间接经济损失的避免。

根据表1中2017年洪涝灾害冲击通过产业链传播造成的间接经济损失在各省的分布情况和大小,31个省份分为四个部分:经济欠发达地区,如青海、宁夏、西藏,这些省份的间接损失都在2亿元以下;
二是受洪涝灾后冲击较小的省份,如天津、北京、上海,或者甘肃、辽宁、黑龙江等受到影响但制造业不发达地区,这些省份的间接损失均在10亿元以下;
三是受洪涝灾害影响较大的省份,如吉林、广西、陕西等,或者制造业发达的地区,如江苏、河南、重庆等,这些省份的间接经济损失在10~30亿元之间;
四是受洪涝灾害冲击严重的湖南、广东、江西、湖北等地,其间接经济损失超过了40亿元,因为企业产业链上下游企业大部分还是在本省,受到洪涝灾害冲击严重的省份也是受间接经济影响最大的省份。

表1 各省份因洪涝灾害导致的经济损失和比例 单位:亿元

根据表1展示的洪涝灾害造成的各省2017年总经济损失以及间接和直接经济损失的比值(各省直接经济损失来自《水旱灾害公报》,各省间接经济损失值由笔者估算得到,总经济损失是直接和间接经济损失之和)。本文用该比值衡量各省份受洪涝灾害产业链传播影响的严重程度。间接经济损失与直接经济损失比值最高的是上海,其次是北京、江苏、河南、重庆,因为这些省份受到洪涝灾害直接冲击较小,或者这些省份与其他省份的产业链联系密切;
吉林、西藏、甘肃、辽宁这些省份的比值都很小,因为这些省份受到洪涝灾害直接冲击相对较大,也可能是因为这些省份制造业不发达,产业链较短;
湖南、广东、广西等受洪涝灾害直接冲击较严重,其间接经济损失约占直接经济损失的20%。

本文的结果是针对2017年特定洪涝灾害冲击情景,主要是发生在长江中游区域性大洪水,洞庭湖水系的流域性大洪水,以及台风登陆导致的珠江大洪水。中国洪水还可能发生在黄河流域和长江下游,不同洪涝灾害情景造成的间接经济损失情况与本文的结果可能存在差异,需要进一步的针对性分析。

本文构建了高精度、多区域的中国洪涝灾害间接经济损失评估框架,逐日评估了2017年中国多场次洪涝灾害造成的直接影响通过产业链传播引发的间接经济损失,模拟了洪灾的直接冲击通过产业链传播的具体过程和引发的短缺情况,展示了模型的供应链预警能力。得出以下三点结论:

1.洪涝灾害的间接经济损失评估是洪涝灾害综合损失评估中不可或缺的一部分。2017年中国洪涝灾害造成的间接经济损失占直接经济损失的29%,低于以往基于IO模型的研究结果,这是因为本文为生产主体在面对洪涝冲击时设置了大量的适应行为,研究结果可以为其他多区域评估模型提供下限。

2.有50%的间接经济损失来自制造业,这是由于洪灾导致各省份大量人口受影响以及基础设施损坏而导致的停工停产。受直接损失冲击较严重的农林牧渔业和采矿业的间接经济损失约占10%,因为其处于生产的初始端而不易受到产业链的级联影响。

3.洪涝灾害的产业链效应会外溢到其他省份,但洪灾冲击导致的间接经济损失大部分仍在本省,这与企业的本地化产业链选择有关。以间接经济损失与直接经济损失之比衡量的产业链级联效应的大小,主要与各地区的直接经济损失、发达程度、以及制造业比重有关。

针对以上结论,本文提出了三点政策建议:

1.洪涝灾害造成的经济间接损失不容忽视,否则会低估洪灾的社会总成本,误导洪灾风险管理的行动和适应性行为。对于易受洪灾直接影响的地区(湖南、江西、湖北等),除进一步加强筑堤修坝,整治河道等的力度来调控洪水,还需要加大在非工程措施上的投入力度,降低社会公众面对洪水风险的脆弱性,从而减少洪灾的直接和间接经济损失。

2.政府要加强洪水预报预警与应急响应措施,针对可能出现的洪灾情况开展避洪演练,通过各种媒介广泛宣传和纠结,增强群众的避洪意识和能力,减少因人员受洪灾影响导致的停工停产;
开展土地、建设、产业规划,将重要产业资源向低洪灾风险地区转移,改良作物品种增强耐淹能力,提升建筑物耐淹抗冲性能,通过提升承载体的抗灾能力来降低直接损失。

3.建立洪水保险和风险补偿机制(被产业链效应外溢的发达省市,如北京、上海、天津和江苏,应向易受冲击的省份提供部分资金),分担洪水风险,促进灾区尽快恢复重建;
对部分处于产业链关键位置的省份—产业,要进行库存储备和产能冗余,减少洪涝灾害直接损失引发的间接经济损失。

猜你喜欢洪灾经济损失省份美国供水与清洁基础设施不足造成每年85.8亿美元经济损失水利水电快报(2022年8期)2022-11-23浅论执法中队如何在洪灾中发挥能效锦绣·上旬刊(2022年2期)2022-05-16How to survive a flood 如何从洪灾中活下来疯狂英语·新阅版(2021年10期)2021-12-08How to survive a flood如何从洪灾中活下来疯狂英语·新悦读(2021年10期)2021-11-23谁说小龙虾不赚钱?跨越四省份,暴走万里路,只为寻找最会养虾的您当代水产(2019年11期)2019-12-23烧伤创面感染直接经济损失病例对照研究中华老年多器官疾病杂志(2016年9期)2016-04-28醒醒吧,人类!少儿科学周刊·儿童版(2015年7期)2015-11-24因地制宜地稳妥推进留地安置——基于对10余省份留地安置的调研中国土地科学(2014年4期)2014-03-01

推荐访问:洪涝灾害 产业链 中国