下面是小编为大家整理的长方体和正方体表面积1教学反思,长方体和正方体表面积教学反思,博客(7篇)【完整版】,供大家参考。
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧
长方体和正方体的表面积1教学反思 长方体和正方体的表面积教学反思 博客篇一
本节课教学本着“让学生自主探究活动贯穿于课的始终”的原则,让学生充分自主学习、研究、讨论、操作,从而得出结论,激发了学生的学习兴趣,培养了学生思维能力和实践操作能力。
新课伊始,创设让学生“猜一猜”做一个长方体纸盒和正方体纸盒,哪个用的纸板较多这一情境,引发学生思考,“用什么方法才能比较出来呢?”学生通过思考与交流,认识到“必须分别计算出六个面的总面积”,这时教师因势利导指出:“长方体或正方体六个面的总面积叫做表面积”,这样设计能刺激学生产生好奇心,进而唤醒学生强烈的参与意识,产生学习的需要,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。
数学知识具有高度的抽象性,我们要多引导学生在操作中思考加工,培养技能技巧,促进思维发展,因此,在教学长方体表面积计算方法时,先让学生动手操作,以长方体的特征为依据,从给出的12个面中选取相应的面拼成长方体,学生在动手拼的过程中,通过比较分析深刻地认识了长方体的特征,抓住了推导长方体表面积计算方法的关键,然后再让学生测出拼成的长方体的长、宽、高,通过小组合作共同探索出长方体表面积的计算方法。
在学生掌握了长方体表面积的计算方法后,不单独安排时间推导正方体表面积的计算方法,而是设计了一道综合练习,以选择题的形式出现,学生在算式说意义的过程中很自然地发现了正方体表面积的计算方法,这样既节省了时间,又培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,在师生共同参与和评价中,达到优化思维,推陈出新的效果,并从中感受到学习的乐趣。
本节课教学也存在一定的不足,例如,优生在课堂上仍是主角,学困生由于动手能力差,思维跟不上,大部分时间只能充当观众与听众,从课堂练习可以看出他们对所学的知识一知半解,课堂如果让他们充分动手操作与表达,又会花费大量的时间,不知如何解决这样的矛盾。
长方体和正方体的表面积1教学反思 长方体和正方体的表面积教学反思 博客篇二
《长方体的表面积》是北师大版小学数学五年级下册的内容,这部分知识的教学是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学习几何知识由平面计算扩展到立体计算的开始,是本单元的重要内容。本节课的重点就是理解表面积的概念及掌握表面积的计算方法。学生对旧知识已经有了一定的积累,但空间思维还没有真正形成的。为了使学生更好地建立表面积的概念和计算方法,应加强动手操作和直观演示,按照引入情境——自主探究——掌握规律的教学思路设计教学方案。本节课教学本着“结合实际、本本真真”的原则,让学生充分自主学习、讨论、操作,从而得出结论,激发了学生的学习兴趣,培养了学生思维能力和实践操作能力。
《新课程标准》指出:在教学中要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与与技能。开课时我用长方体的实际的学具引入新课,讲明长方体有六个面,老师想知道长方体的六个面到底有多大,请你利用小组中的学具帮助老师解决。学生通过思考与交流,认识到“要想知道长方体的六个面到底有多大,必须计算出六个面的面积总和”,这时我因势利导指出:“长方体六个面的面积之和叫做它的表面积”,然后再让学生摸一摸、说一说。这样设计既能刺激学生产生好奇心,又能唤起学生强烈的参与意识,产生学习的需要,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。
数学知识具有高度的抽象性,我要引导学生在操作中思考,促进学生思维发展。在教学长方体表面积计算方法时,我先让学生动手操作,以长方体学具为依据,学生在动手操作的过程中,通过比较更为深刻地认识了长方体的特征,抓住了长方体表面积计算方法的关键,然后让学生在小组活动中通过说一说、算一算等方法,共同探索出长方体表面积的计算方法。在这里鼓励学生有不同方法,培养了学生的求异思维。学生在掌握了正方体的特征后,可以在学习的过程中很自然地发现了正方体表面积的计算方法,这样,改变了以往将正方体的表面积独立用一单位时间教学的方法这样既节省了时间,又培养了学生优化思维和求异思维的能力,促进课堂效益的提高。
在学生掌握了长方体表面积的计算方法后,利用所学知识解决一些实际的问题。使学生在愉快的气氛中,在师生共同参与和评价中完成练习训练,达到由浅入深、推陈出新的效果,并从中感受到学习的乐趣。
数学来源于生活,同时又服务于生活。应用学到的知识解决实际生活中的问题,不但能使学生感受数学与实际生活是密切联系的,而且能培养学生的创新精神。为此,我出示了以下几种情况的练习:(1)无盖的玻璃鱼缸(2)四个面的沉箱。使学生认识到长、正方体的表面积也会遇到许多特殊情况,我们求表面积不可以千篇一律要根据实际情况具体问题具体分析。
1、部分学困生还是没有完全照顾到。因为是从平面到立体,从二维到三维,成人看似简单,而对小学生却有一定的难度。如果
在课堂上我能够抓住学生实践的过程适时把展开的平面图做出点拨效果会更好。
2、有些学生缺乏空间想象力,还是分不清楚具体的面应该怎样求才是它的面积,而且学生缺乏耐心细致,做不到具体情况具体分析,因此在解决实际问题时,失误较多。在今后的教学中我应注重通过观察物体、认识方向、制作模型、设计图案等活动,发展学生的空间观念。
这节课对我来说是一次挑战也是一次机会,它也给我带来了更多的思考。无论对老师还是学生都需要知道结论,而相对来说更重要的还是经历过程。一次经历、一次反思、一次锻炼、一次提高!
长方体和正方体的表面积1教学反思 长方体和正方体的表面积教学反思 博客篇三
在教学《长方体和正方体的表面积》时,我首先让学生仔细观察手中的长方体,然后让学生认真思考长方体各个面的面积与长方体的长、宽、高之间的关系,从而让学生知道:
前、后面=长脳高脳2;
左、右面=宽脳高脳2;
上、下面=长脳宽脳2.
最后总结归纳:
长方体表面积的计算公式:
方法(一):s=长脳高脳2+宽脳高脳2+长脳宽脳2
方法(二):s=(长脳高+宽脳高+长脳宽)脳2
正方体表面积的计算公式:
s=棱长脳棱长脳6
在计算长方体和正方体表面积时,要考虑到以下几种情况:
1、完整的(六个面都有)长方体或正方体
这种类型的题目,直接套用表面积计算公式即可。
2、无底或无盖的长方体或正方体(如粉刷教室、鱼缸、游泳池等的表面积)
这种类型的题目,首先要看清楚要计算的是哪几个面,然后再进行解答。
公式:s=长脳高脳2+宽脳高脳2+长脳宽
3、求长方体或正方体四周的表面积
它指的是长方体或正方体周围四个面(即前面、后面、左面、右面)的表面积。
公式:s=长脳高脳2+宽脳高脳2
总体说来,这部分知识只要掌握了长方体和正方体的表面积及计算方法,对于学生们来说是很容易的。学习困难的学生在教师的指导下,也能学得很不错。表面积的计算公式,同学们也能做到运用自如。但中间还是出现了一些问题,比较严重的就是学生的计算能力不强,导致解题过程中出现了不少错误。今后,我需要在这一方面采取一些措施,如通过小组竞争等方式来提高同学们计算的准确性。
长方体和正方体的表面积1教学反思 长方体和正方体的表面积教学反思 博客篇四
“长方体和正方体的表面积”是在学生已经掌握了一些简单的平面图形知识的基础上,过渡到初步的立体图形上学习的。本节课的学习目标是让学生进一步认识长方体和正方体的特征,掌握长方体和正方体表面积的计算,体现“立体——平面——立体”螺旋上升、循序渐进的教学思想,并通过平面图形和立体图形的联系沟通,培养和发展学生初步的空间想象能力。课堂教学是素质教育的主渠道,素质教育是以全面提高全体学生的基本素质为根本目的,以弘扬学生的主体性和主动精神为主要特征,注重开发学生的智慧潜能,注重形成人的健全个性。因此在小学数学课堂教学中,引导学生主动参与,自主探索,锤炼思维,培养能力,发展智力,浸润情感态度是素质教育的应有之义,“长方体和正方体和表面积”一课,正是从这一思路出发预设、生成教学过程的。
创设一个能够吸引学生的、源于生活的、有趣的、有用的、可操作的、可探索的情景,有利于激发学生的学习兴趣和愿望,使学生处于积极主动的学习状态,有利于学生自主探索。新课标强调“要让学生在现实情境中和已有知识的基础上体验和理解数学知识”“要提供丰实的现实背景”任何知识源于生活又服务于生活。生活中处处有数学,让现实的生活数学走进学生视野,使生活数学与数学问题有机地结合起来,使学生体会在生活中做数学的乐趣。设计时应从生活实际出发,引导学生明确学习求长方体、正方体表面积的必要性,以激发学生的求知欲。
知识的形成发展是有层次的,且与旧知识紧密相连。新课展开必须以学生原有生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。为此,新课的组织展开以有利于教材结构与学生的认知结构产生同化,有利于学生主动建构为目的。
学生计算长方体、正方体表面积必须具有较强的空间观念,这是教学的难点。为此,借助于实物投影、模型、多媒体课件,让学生观察、触摸、拼拆、抽拉、展示,全方位感知,培养空间观念,寻找知识的结合点,让各种现代化教学手段协同互补在提高课堂教学效率与质量上发挥更好的媒介作用,实现信息技术与数学教学的整合。
“长方体和正方体的表面积”教学案例与反思案例:
师:(出示一个长方体纸盒和一个正方体纸盒)猜一猜,这两个纸盒那个用的纸板多? 生:我觉得这个长方体用的纸板多。因为它比这个正方体长。
生:我觉得这个正方体用的纸板多。因为它比这个长方体高。
生:我觉得这两个纸盒用的纸板同样多。因为这个长方体比这个正方体长,而这个正方体又比这个长方体高。中和一下就同样多了。
师:如果只靠我们这样空口无凭地去猜,能否得出正确结果?
生:不能。
师:那我们应该怎么办?
生:我们应该分别计算出它们的六个面的总面积。
师:你的想法真不错。长方体或正方体6个面的总面积就叫做他的表面积。摸一摸、说说长方体的表面积都包括哪儿?
生:边指边说,包括上下、左右和前后六个面。
师:老师给每个小组都准备了8个长方形,要求:从给出的8个长方形中选出6个长方形围成一个长方体,同时思考:(出示)①长方体的6个面之间有什么关系?②长方体每个面的两条边分别与相邻两个面的边长有什么关系?通过量一量、剪一剪、拼一拼、摆一摆等方法求出长方体的表面积,并把讨论结果写在之上。
生:小组活动。
生:反馈交流
第一种方法:我们先求出每个面的面积,再把这六个面的面积相加,就能算楚这个长方体的表面积了。
第二种方法:我们先把长方体的六个面剪开,把相对的面摆在一起组成三大部分,再用长×宽×2+高×宽×2+长×高×2,就能算楚这个长方体的表面积了。
师:你们的想法很好,还有其它想法吗?
生:还可以用乘法分配律把第二种方法写成(长×宽+高×宽+长×高)×2,也就是把长方体纸盒剪成面积相等的两大部分上面、左面、前面和下面、右面、后面。
师:你能够运用过去所学知识来解决新的问题,很会学习。在这些方法中,你认为哪种方法好?为什么?
生:我认为第三种方法好,因为这种方法最简便。
师:我们今天学的这种类型的题当然用第三种方法比较简便,但在实际生活中还会遇到很多实际情况,我们要根据实际情况灵活运用计算表面积的方法。
1、用你喜欢的方法计算纸盒的表面积。(单位:厘米)
2、选择求上、下地面是正方形的长方体表面积的最优方法。
①(5×3+5×3+3×3)×2
②5×3×4+5×3×3×2
3、选择求长、宽、高相同的长方体表面积的最优方法。
①3×3×6
②(3×3+3×3+3×3)×2
1、讲下列物体的表面积所包括的面进行分类。
(1)无盖的长方体木箱(2)正方体纸盒(3)在一个长方体游泳池四壁和底面抹水泥(4)长方体包装箱(5)手提袋(6)灯管的包装盒(7)字典的封皮(8)火柴盒,
2、一间教室,长8米,宽5米,高4.5米,要粉刷屋顶和四壁,除去门窗面积20平方米,粉刷面积是多少平方米?
《长方体和正方体的表面积》是在学生认识并掌握了长方体、正方体特征的基础上教学的,也是学生学习几何知识由平面计算扩展到立体计算的开始,是本单元的重要内容。学生对旧知识已经有了一定的积累,但空间思维还没有真正形成。为了使学生更好地建立表面积的概念和计算方法,应加强动手操作和直观演示,按照创设情境——实践操作——自主探究——掌握规律的教学流程进行设计教学方案。
本节课教学本着“让学生自主探究活动贯穿于课的始终”的原则,让学生充分自主学习、研究、讨论、操作,从而得出结论,激发了学生的学习兴趣,培养了学生思维能力和实践操作能力。
新课伊始,创设让学生“猜一猜”做一个长方体纸盒和正方体纸盒,哪个用的纸板较多这一情境,引发学生思考,“用什么方法才能比较出来呢?”学生通过思考与交流,认识到“必须分别计算出六个面的总面积”,这时教师因势利导指出:“长方体或正方体六个面的总面积叫做表面积”,然后再让学生摸一摸、说一说长方体的表面积包括哪儿?这样设计能刺激学生产生好奇心,进而唤醒学生强烈的参与意识,产生学习的需要,使学生在自主的观察与思考中理解了表面积的意义,为探索长方体和正方体表面积的计算打下了良好的基础。
数学知识具有高度的抽象性,我们要多引导学生在操作中思考加工,培养技能技巧,促进思维发展,因此,在教学长方体表面积计算方法时,先让学生动手操作,以长方体的特征为依据,从给出的8个长方形中选取相应的面拼成长方体,同时让学生思考:①长方体六个面之间的关系?(相对的两个面是完全相同的。)②长方体每个面的两条边分别与相邻的两个面边长之间的关系?(每个面的两条边一定分别与相邻的两个面的一条边相等。)学生在动手拼的过程中,通过比较分析深刻地认识了长方体的特征,抓住了推导长方体表面积计算方法的关键,然后让学生在小组活动中通过量一量、剪一剪、拼一拼、摆一摆等方法,共同探索出长方体表面积的计算方法。在这里鼓励学生有不同方法,培养了学生的求异思维。
在学生掌握了长方体表面积的计算方法后,不单独安排时间推导正方体表面积的计算方法,而是设计了一道综合练习,(图略,选择求长、宽、高都是3厘米的长方体的表面积的最优方法。①3×3×6 ②(3×3+3×3+3×3)×2 ③3×3×4+3×3×2)。以选择题的形式出现,学生在说算式意义的过程中很自然地发现了正方体表面积的计算方法,这一设计,改变了以往将正方体的表面积独立用一单位时间教学的方法,这样既节省了时间,又培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,在师生共同参与和评价中,达到优化思维,推陈出新的效果,并从中感受到学习的乐趣。
数学来源于生活,同时又服务于生活。应用学到的知识解决实际生活中的问题,不但能使学生感受数学与实际生活是密切联系的,而且能培养学生的创新精神。为此,我先出示了以下几种情况,(1)无盖的长方体木箱(2)正方体纸盒(3)在一个长方体游泳池四壁和底面抹水泥(4)长方体包装箱(5)手提袋(6)灯管的包装盒(7)字典的封皮(8)火柴盒,让学生从各种物体的表面积所包括的面进行分类。从中使学生认识到长、正方体的表面积也会遇到许多特殊情况,我们在求表面积是不可以千篇一律,死套公式,要根据实际情况具体问题具体分析。在此基础上,我又及时拓宽学生的思路,让学生举出在日常生活中,做哪些事与求长方体或正方体的部分面积有关,培养了学生的空间想象力和求异思维的能力。再有,与实际生活联系,学生乐学、愿学。
本节课教学也存在一定的不足,例如,优生在课堂上仍是主角,学困生由于动手能力差,思维跟不上,大部分时间只能充当观众与听众,从课堂练习可以看出他们对所学的知识一知半解,课堂如果让他们充分动手操作与表达,又会花费大量的时间,如何解决这样的矛盾,仍是我今后的重要研究内容。
长方体和正方体的表面积1教学反思 长方体和正方体的表面积教学反思 博客篇五
出示例5:一个长方体玻璃鱼缸,长5分米,宽3分米,高3.5分米。制作这个鱼缸至少需要玻璃多少平方分米?(鱼缸的上面没有玻璃)
一起分析题意后,学生列式计算。
生1:先算出6个面的总面积,再减去上面的面积。(5×3.5+3×3.5+5×3)×2-5×3
生2:先求出前后、左右、下面的面积,再相加。式子是:5×3.5×2+3×3.5×2+5×3
生3:我的方法和刚才的基本相同,列式上可以再简单些:(5×3.5+3×3.5)×2+5×3
三种方法都交流完后,我本以为就到此为止了,但我班的数学课代表举手了,他说:“我还有方法”。
我一楞,心想,方法不是都讲完了吗?怎么还有?但我还是叫起了他,想让他说说。
他说:我从生3的方法上想到了一个更为简便的式子:(5+3)×3.5×2+5×3
咦?这不是把生3的式子运用乘法分配律而得到的吗?这个式子每一步会有具体的含义吗?
我一抛出这个问题,该生起初一楞,当时只顾着寻求不同的列式却没考虑意思,现在一时间回答不上来了。
但其余同学被他的思路启发后,思维一下子打开了。
一位学生解释道:底面先不看,如果沿着高将玻璃缸展开,会变成一个长方形,这个长方形的长就是原长方体长加宽的和的2倍,这个长方形的宽就是原长方体的高,所以这个长方形的面积就是(5+3)×3.5×2,再加上一个底面积,就可以列成(5+3)×3.5×2+5×3的式子了。
该学生解释,我配合着画图,在图形的帮助下,众学生豁然开朗。
[反思]多好的思路,多好的解释!我庆幸没为自己的卤莽而抹杀了一个创新的方法,我也为自己课前预设的不够周全而后悔。在之后的教学中,我发现用这种方法的地方有很多,如在教学完例5后的练一练的第1题:一个长方体饼干盒,长17厘米,宽11厘米,高22厘米。如果在它的侧面贴一圈商标纸,这张商标纸的面积至少有多少平方厘米?这道题也可以用(17+11)×2×22的方法来做,且比较简单。在今后的教学中,教师还得用心去细细研读教材,逐一分析每一道题,力求做到预设全方位。
长方体和正方体的表面积1教学反思 长方体和正方体的表面积教学反思 博客篇六
在教学《长方体和正方体的表面积》时,我首先让学生仔细观察手中的`长方体,然后让学生认真思考长方体各个面的面积与长方体的长、宽、高之间的关系,从而让学生知道:
前、后面=长×高×2;
左、右面=宽×高×2;
上、下面=长×宽×2。
长方体表面积的计算公式:
方法(一):s=长×高×2+宽×高×2+长×宽×2
方法(二):s=(长×高+宽×高+长×宽)×2
s=棱长×棱长×6
在计算长方体和正方体表面积时,要考虑到以下几种情况:
1、 完整的(六个面都有)长方体或正方体
这种类型的题目,直接套用表面积计算公式即可。
2、 无底或无盖的长方体或正方体(如粉刷教室、鱼缸、游泳池等的表面积)
这种类型的题目,首先要看清楚要计算的是哪几个面,然后再进行解答。
公式:s=长×高×2+宽×高×2+长×宽
3、 求长方体或正方体四周的表面积
它指的是长方体或正方体周围四个面(即前面、后面、左面、右面)的表面积。
公式:s=长×高×2+宽×高×2
总体说来,这部分知识只要掌握了长方体和正方体的表面积及计算方法,对于学生们来说是很容易的。学习困难的学生在教师的指导下,也能学得很不错。表面积的计算公式,同学们也能做到运用自如。但中间还是出现了一些问题,比较严重的就是学生的计算能力不强,导致解题过程中出现了不少错误。今后,我需要在这一方面采取一些措施,如通过小组竞争等方式来提高同学们计算的准确性。
长方体和正方体的表面积1教学反思 长方体和正方体的表面积教学反思 博客篇七
本节课的内容是在学生已经学习了面积和面积单位、长方体和正方体特征的基础上进行教学的,为进一步学习其他立体图形奠定基础。
1.重视表面积概念的教学。在教学中利用在上节课中学生粘贴的长方体和正方体,让学生沿着棱剪开得到它们的展开图,并标出“上、下、前、后、左、右”六个面。这样把长方体和正方体的展开图与表面积的概念结合起来进行教学,便于把展开后的每个面与展开前的每个面的位置对应起来,可以更加清楚地看出长方体相对的面的面积相等,每个面的长和宽与长方体长、宽、高之间的关系,从而得出表面积的概念,即长方体和正方体六个面的总面积,叫做它的表面积。
2.重视表面积计算公式的推导。在例1的教学中,通过结合生活中的情境将知识学习、方法探究和解决问题三者统一起来进行教学,可以使学习内容基于问题学习,让学生进行主动探索表面积的计算方法,从而起到“一石三鸟”的功效。另外在推导长方体表面积计算公式的过程中,得出两种计算方法,教学中充分利用已有知识乘法分配律来沟通两种方法。特别要突出计算上(或下)面是长与宽的积,前(或后)面是长与高的积,左(或右)面是高与宽的积的教学,让学生牢固进行记忆,避免出现死记硬背计算公式的现象。
1.计算出现错误的现象很严重,主要是学生不细心,对于小数的计算不重视。
2.个别同学对于上下面、前后面、左右面的计算混淆,导致出现有的面不需要计算还是计算在内。
3.对于特殊的长方体进行侧面积计算时应补充为侧面积=底面周长×高,这样对于计算特殊长方体比较简便。
突出计算上(或下)面是长与宽的积,前(或后)面是长与高的积,左(或右)面是高与宽的积的教学,让学生牢记。
推荐访问: